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Chebyshev approximation on an interval and on its closed subsets by a 11011­

linear family with Haar tangent space is considered. The closeness of best ap­
proximations on subsets to the best approximation on the interval is examined. It
is shown that under favorable conditions the difference is Old'), where d is the
density of the closed subset, making it unnecessary to use very large finite suhseh
to get good approximations on the interval.

Let X be a closed finite interval [ex, {1] and Y a closed subset or X. LeL
C(X) be the space of continuous functions on X. For h E C(X) define

sup{i h(x)i : x E Yj, ihi~~ li x .

Let F be an approximating function with parameter space P such that
F(A, -) l= C(X) for A E P. The approximation problem on Yis, given[fc C(X),
to find A * c P to minimize ,If - F(A, ')[i}' over A E P. Such a parameter A *
is caJled best and F(A *, .) is called a best approximation to f on Y.

Denote the best approximation on Y (if it exists and is unique for all Y) by
P y . Define

a( Y) f-- PI

a( Y) is a measure of the goodness of the best approximation on Y as an
approximation on X. We consider the dependence or P y and a( Y) on f Y
and, in particular, on thc density I Y! of Y:

, Y: .~~ sup[inf{ i Y - x : y c Y}: x EX].

The case of linear approximation has already been studied by the author
in [14J.
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PRELIMINARIES

We will assume henceforth that P is a subset of real n-space with the norm

A max( ai, : f..: I ••. ., n:. where A

DEFINITION. Let F have a continuous partial derivative F with respect to
(/; ..i I. .. ., n. Defi ne

/)(A.B.x)

For some A. let

I hIFI(A. x).
I, I

B

R(A, B, x) F(A B, x) F(A. x) D(A, B.Y)

be 0(, B2) as B .. O. Assume P is open. Then we say F is locally linear
at .4.

DrTINITlot". F has property /. of degree m at A if F(A . .) F( B• .) having
m zeros implies F(A.·) F(B. ').

We assume henceforth that for all A p. F is locally linear at A and there
is a positive number p(A) (the degree of F at A) such that F has property Z of
degree peA) at A and, {D(A, B• .) : Be £,,1 is a Haar subspace of dimension
peA). It follows from the theory of Meinardus and Schwedt [6, p. 3\0] that
F(A • .) is best tolon Y if and only iff - F(A, .) alternates peA) times on V.
and best approximations on Yare unique. It has been shown by BarraI' and
Loeb [I] that our hypotheses imply that F is unisolvent of degree p( A) at A:
that is. F is wrisoh·cnt.

We now give some approximating families (F. P) satisfying these hypo­
theses. Families of ordinary rational functions (with a constant term in the
denominator ilxed equal to one) satisfy them. It is shown by Meinardus and
Schwedt that sums of 11 exponentials satisfy them [6, p. 312]. Some families
of the form F(A. x) a1 cP(a2x) [10] and many families of the form F(A.y)

a J ((2cP(a:Jx) [II] satisfy them.
Let us consider transformations of the approximating family. Let 4, be a

continuous mapping of the real line into the extended real line and define

G(A. x) cP(F(A. x)) P':A : A E P. G(A . .), 'x::.

If cP is an order function [8] whose first derivative docs not vanish and
whose second derivative is continuous (where cP is finite). then (F. P) satis­
fying the hypotheses implies that (G. Pi) satisfies the hypotheses with tIll'
same degree [8: 9. Theorem 3]. Of particular utility are transformed ro1y-
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nomials and transformed rationals [8, 12, 13]. Use of an ordinary weight
function w > 0 does not affect matters, since if (F, P) satisfies the hypotheses,
so does (wF, P).

In [5] we proved

THEORE\l I. Let F(A, .) be best to f on X and p(A) ~~ n. On all sufficientlv
dense subsets a best approximation of degree n exists to f Let i Y/ I ---+ 0 and
AI. he best on YI. ,then F(A,·) -- F(AI, . )l-~ o.

If p(A) n such a result may not be possible. In particular it is known for
a class of cases including ordinary rational approximation and exponential
approximation that there exists Yk , YI. i-+ 0, with uniform convergence
not occurring [3]. More generally, failure of existence or uniform convergence
can often be shown to occur [4, Theorem 7].

Define E(A, x) !(x) -- F(A, x). In case the best approximation on
{XI) , ...• x,,: is of degree n, it can be obtained by solving the system

0, .... n (0)

for unknowns a1 ,... , an , A. A solution is unique [2, middle of page 228]. The
system is fundamental to Remez' algorithm [2, p. 228]. We can attempt to
solve the system by Newton's method.

LE'vl 'viA. Let there exist a solurion A *, A* to (0) with F(A *.. ) of degree 11.
The matrix of partial dericatives for Newton's method is 110nsingular at the
solution (A*, A*) of system (0).

Proal If it is singular, there is B (b l , ... , bnl) not identically zero such
that

If hI! I 0, D(A*. B. Xi) has n --: I zeros, contradicting the Haar subspace
hypothesis. If b" 1 O. D(A *, B, .) alternates in sign on {XI) ..... x,,1. contra­
dicting the Haar subspace hypothesis.

DEPENDENCE UNDER FAVORABLE CONDlTIO:-JS

THEORE\1 2. Let f have F(A *, .) as its best approximation on X and
let p( A *) n. Let endpoints be in Y if they arc extrema off - F(A *, '). Let E
hare continuous second partial deril'atives about (A*, x)for all X E [ex, f3]. Theil
I Px Pv = 0(1 Y" i). and u( Y) = OC Y i

2).

Proof Let {Xl)*, ...• x,,*1 be an alternant off F(A*,·) on X. The reader
is asked to review the notation of W. Kahan and the author [2, middle of
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page 229] and the proof [2, p. 230]. We note that matrix (4) of [2.229] IS

nonsingular by the previous lemma. Using the techniques of [2, pp. 229-230],
we associate with given {xo ..... x,,: near an alternant off F(A *.. ) on X. a
change of deviation OA A 1\*. where Ais the deviation of the best approxi-
mation on {xo x,,:. We infer from the cited proof, with:.\"o \",,: chosen
closest in Y to {xo*•.... x" *}, that OA O( Y 2).

By Theorem I. there is E 0 such that if}' E. then there is a best
approximation P, to f on Y and Pl' is of degree II. Assume henceforth that

Y E. An alternant {xo •... , x,,: off p} on Y is characterized by the
deviation of the best approximation on it being maximal over deviations 01'
best approximations on n ! I point subsets of Y. Hence. if {xo \",,: is an
alternant off P1, on Y, we have OA OC Y [2) also.

Let YI -+ 0: then for all k sufficiently large there is by Theorem I AI
besttofon }1.,p(AI,) II. Further F(AI, •. ) F(A"'. '), ·~Oandbyresults

of Barrar and Loeb [I, Theorem 2]. {AI'l • A". Let:x,/..... x,/,: be an
alternant of f F(AI, •. ) on YI,. By uniform convergence of F(A .. ) to
F(A • .). the sequence of (II i I)-tuples (x,/ ..... x,n has a subsequence
converging to an alternant xo

x..... x"x 01' f F(A*. '). Assume that the
sequence of (II i I)-tuples is convergent. Assume without loss of generality
thatf(xo*)- F(A*. xo*) O. then we have

I)' (f(x,*) F(A *. x i*)) ;\ i

I)i (f(x/) F(A*, x/)) A"

I)' (f(x/) F(AI.\/)) No A'

Subtracting (J) from (2). we obtain

0..... II.

0..... II. ( J )

0..... II. (2)

J)'[F(AI,.x/) F(A*.\/)] O( Y j,")

which can be rewritten as

0..... II.

I)' [D(A*. AI, A*. x/) R(A*. AI, A"'. x/)] O( Y j,.2). i 0..... II.

We can assume without loss of generality that {Ai,

sequence. Define
A *: is a nonzero

A

then i C'
Suppose

1. Assume without loss of generality that {Ckl-+ C. C \.

(--I); D(A*. c, Xi) 0 0.... , II.
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then the Haar condition is violated. Hence there is i such that (-I)i D(A *.
c. Xi) O. By arguments similar to those of Rice [7, p. 24] and continuity,
there is y 0 such that

(-I)iD(A*.A I, A*, xl) Y AI, .~. A*

for all k sufficiently large. Now by hypothesis on R,

hence

i R(A *, AI, A*, ')'

l)iD(A*,A I, i --c 0, ... ,11. (3)

We now state and prove a generalization of a result of Rice [7, top of
page 64]. This generalization was used hut not proved in [14].

ASSERT/Or--;. Let L be a linear approximating function generated by a
Chebyshev set. Let {x/J -+ Xi for i 0, ... ,11. Let AI; satisfy

(- I)i L(A I, • .x/') 28, i c= 0, ... ,11. (4)

There exists a constant K (independent of 0) such that for all Ie sufficiently
large

L(AI, . .) Ko.

Proof By Lemma 2 of [4], (4) implies that {L(AI" .): is uniformly
hounded. Independence of K follows from linearity of L.

From the assertion and (3) we get

D(A*, AI- A*, .)

hence by Lemma I-I of Rice [7, p. 24],

O(! Y,,2),

hence

F(AI" .) - F(A*,

Let us now consider how restrictive are the hypotheses of Theorem 2. The
first major assumption is that the best approximation is of maximum degree.
There are two main reasons why this is likely. First, there is usually a low
probability that approximations of less than maximum degree are best. For
example, in rational approximation the set of functions whose best approxi­
mation is of less than maximum degree is nowhere dense [4, p. 109]. Second,
approximations of lower degree are usually of simpler form: If they are best,
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it is usually an indication that the approximating family is inappropriate for
approximating the function, since a simpler form approximates just as well.
The next assumption is that V contains all endpoints which are extrema of the
error.

Simple cases show that having the endpoints in V is a good practice; hence
this is not restrictive. The final assumption is that E have continuous second
partial derivatives about (A *, x) for x E [,\:, f3]. For most! and F of practical
interest, continuous partial derivatives of all orders exist.

It appears that the rate of convergence of the theorem cannot be improved
even under more restrictive hypotheses, sinee exactly quadratic convergence
has been observed in an example [14, p. 312] of approximation of an analytic
function by constants.

C\lOICE OF SUBSET

A more careful look at the proof of Theorem 2 shows that the quality of
the best approximation on a subset V depends only on the closeness of Y to
an alternant of! F(A *, '). Density merely guarantees closeness. Let d( Vi
be the distance of the closest altemant of f F(A *.. ) from V. Then in the
start of proof of Theorem 2, we have i)'\ .~. O(d2( Y)) and we end with

P y P r O(d2( V»). It follows that it only pays to make V dense near
the extrema of f F(A *, .) and points of V elsewhere are of no beneflt
(except in assuring us that a larger error does not occur there). It would,
therefore, be useful to know where error extrema are most probable, so that
our points can be concentrated there. Frequently the extrema of the
Chebyshev polynomial of degree n are good estimates of error extrema.
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